
By the way...  Grades

Total homework score:  50% of total grade

Total lab score:          20% of total grade

Exam:                     30% of total grade



Friday
Beta mismatch invariant

Chromaticity -- part II

due to sextupole field errors

correction, using sextupole magnets

effects of sextupole fields on transverse motion

Magnet Edge effects

Discuss (briefly) homework problems



  

Mismatch Invariant

Consider two solutions to                        
through a focusing system
 for example, one may be the periodic solution, the 

other a perturbed solution
Then,

β′′
+ 4Kβ = const.

J02 = MJ01M
−1

J02 + ∆J2 = M(J01 + ∆J1)M
−1

∆J2 = M∆J1M
−1

det ∆J2 = detM det ∆J1 detM
−1

det ∆J2 = det ∆J1

Thus, det ∆J for two solutions is a constant along a beamline

propagate original

    solution

propagate perturbed

    solution



  

Expressions for 
  Determinant of ΔJ
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Injection Mismatch and
  Emittance Dilution
 Suppose beam arrives through a transfer line 

into a synchrotron, but the beta function of 
the line is not matched to the periodic beta 
function of the ring...

 Particles will begin to follow phase space 
trajectories dictated by the ring lattice; actual 
nonlinearities of the real accelerator will 
cause their motion to decohere

 Net result:  emittance dilution

ε/ε0 = 1 −

1

2
det ∆J

if ε ∼ 〈x2〉, then

xʼ

x

incoming ellipse



Chromaticity -- Part II 
Sextupole  Fields

Chromaticity due to sextupole field errors

By = B0 ( 1 + b1 x + b2 x2 + ...)

Chromaticity correction, using sextupole magnets

By = B’’ ( x2 - y2)

Bx = 2 B’’ xy

effects of sextupole fields on transverse motion





Magnet Edges

Need to look at effects at entrance and exit of 
magnets (bending magnets in particular).

Will look at small angle/displacement 
approximations, as usual; more detailed 
descriptions can be found in various references 
(Wiedemann’s book, for example)

More important in lower energy and/or magnets 
which produce large bending angles



  

Sector Magnets
Sector Dipole Magnet:  “edge” of magnetic 

field is perpendicular to incoming/outgoing 
design trajectory:

Field points “out of the page”



  

Sector Magnets & Sector Focusing
 Incoming ray displaced from ideal trajectory will 

experience more/less bending field, thus is 
“focused” toward axis in the bend plane:

x

x

   (as seen previously, with B’ = 0)

For short magnet with small 
bend angle, acts like lens in 
the bend plane with

Extra path length = ds = dθ x
so extra bend angle = dx′ = −ds/ρ
dx′ = −(dθ/ρ)x = −(1/ρ2)x ds
or, x′′ = −(1/ρ2)x

Thus, Kx = 1/ρ2, Ky = 0.



  

Edge Focusing
 In an ideal sector magnet, the magnetic field 

begins/ends exactly at s = 0, L  independent 
of transverse coordinates x,y relative to the 
design trajectory.
 i.e., the face of the magnet is perpendicular to 

the design trajectory at entrance/exit



  

Edge Focusing
However, could (and often do) have the 

faces at angles w.r.t. the design trajectory -- 
provides “edge focusing”

Since our transverse coordinate x is everywhere 
perpendicular to s, then a particle entering with an offset 
will see more/less bending at the interface...

s



  

So, How to Model Edges?
 In many cases, can consider edge effects to 

be perturbations to main motion, and treat 
as “impulse” kicks -- a “hard edge 
model”    (can do better modeling, if required...)

From Above: From Side, “on edge”:

B0

By

Bh
h

y

x = −h sin e h

s

x

e

Bx = −Bh sin e



  

Edge Focusing -- radial
Radial Defocusing:

 So, for positive x, design trajectory “curves away” before particle reaches edge of 
magnetic field; thus, “defocusing” effect

 Similarly, upon exit

h

x e

€ 

Δφ

e

∆x′
= ∆φ =

∆s

ρ
=

x tan e

ρ
=

tan e

ρ
x



  

Vertical Focusing at Edge
From Maxwellʼs Eqs.,

• and so...

 If still not a believer, then ...

∆y′ = −tan e

ρ
y

1

∇×B = 0 → ∂By

∂x
=

∂Bx

∂y

1



  

Edge Focusing -- vertical

Vertical Focusing:
∆y′ =

∆py

p
=

ev
∫

Bx(y)ds

pv
=

1

Bρ

∫
Bxds

= −

sin e

Bρ

∫
Bhds = −

tan e

Bρ

∫
(Bh cos e)ds

= −

tan e

Bρ

∫ L2

L1

"B ·
"ds
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= −
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tan e

ρ
y

∮
!B · !ds = 0 +
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!B · !ds − B0 · y + 0 = 0
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!B · !ds = yB0

Bx = −Bh sin e

Bx(y = 0) = 0
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Total Bend Magnet:
   Sector + Edges
 Treat arbitrary edge angles as separate “lenses” at 

each end of a sector magnet…

e1
   (<0)  e2

   (>0)

 at each edge:

inside, Kx = 1/ρ2,

Ky = 0 Mmag = Me2
MsectMe1



  

Rectangular Bending Magnet
 “Rectangular” Dipole Magnet:

In bending plane, each 
edge acts as a lens with 
focal length:

For Rectangular Magnet, 
then
  hor:

  ver:

For Sector Magnet,
then
     hor:

     ver:
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Tune change due to edge effects

Suppose dipoles are located between 
quadrupoles of a FODO system, as in a 
large synchrotron
 If use sector magnets:

• Δνx = 1/4π  <β>  θ/ρ * no. of dipoles   =   <β>/(2ρ)
• Δνy = 0

 If use rectangular magnets:
• Δνx = 0
• Δνy = 1/4π  <β>  θ/ρ * no. of dipoles   =   <β>/(2ρ)



Past Homework

Problem Set 3 -- #1

Problem Set 3 -- #4



Homework Due Monday

 --  None  --  


